FINDING FORMULA

Pearson Edexcel - Tuesday 21 May 2019 - Paper 1 (Non-Calculator) Higher Tier

1.

20	$h = \frac{120}{\sqrt{t}}$	P1	for setting up a proportional relationship between h and p , eg $h \alpha \frac{1}{p}$ or $h = \frac{k}{p}$ OR a proportional relationship between p and t , eg $p \alpha \sqrt{t}$ or $p = K\sqrt{t}$	Condone the use of '\au' instead of '=' for the first two P marks Relationship may be implied by substitution
		P1	for process to substitute at least 2 values, eg $10 = \frac{k}{6}$ ($k = 60$) or $6 = K\sqrt{144}$ ($K = 0.5$)	
		P1	for full process leading to $h = \frac{"60"}{p}$ oe and $p = "0.5"\sqrt{t}$ oe	Both constants must come from a correct process
		Al	$h = \frac{120}{\sqrt{t}}$ oe eg $h = \frac{120\sqrt{t}}{t}$ or $h = \frac{60}{0.5\sqrt{t}}$	Formula for <i>h</i> in terms of <i>t</i> Does not need to be in simplest form

Pearson Edexcel - Thursday 24 May 2018 - Paper 1 (Non-Calculator) Higher Tier

2.

14	$y = \frac{100}{100}$	PI	for setting up a correct proportional relationship, eg $d \propto x^2$ or $d = kx^2$	Condone the use of '\alpha' instead of '=' for the four P marks
	9x ⁴	P1	for setting up a second proportional relationship, eg $y \propto \frac{1}{d^2}$ or $y = \frac{K}{d^2}$	the four P marks
		P1	(dep P1) for a process to find one of the constants of proportionality eg $24 = k \times 2^2$ ($k = 6$) or $4 = K \div 100$ ($K = 400$)	
		P1	full process to find y in terms of x eg $y = \frac{"400"}{("6"x^2)^2}$ oe	Both constants must come from a correct process
		Al	$y = \frac{100}{9x^4} \text{ oe}$	Expression must have been simplified, but could be given other equivalent ways eg $y = 11.111x^{-4}$

Pearson Edexcel - Thursday 24 May 2018 - Paper 1 (Non-Calculator) Higher Tier

		Personal Company of the Company of t		
19	$b = \frac{2}{3}a + 2$	Pl	for process to rearrange the equation to give y in terms of x	
	3		eg $y = \frac{7-3x}{2}$ or $y = -\frac{3}{2}x + \left(\frac{7}{2}\right)$ or $m = -\frac{3}{2}$	
		Pl	for using their gradient in $mn = -1$	
		Pl	for showing a process to find the gradient of PQ	
			$\operatorname{eg} \frac{b-4}{a-3}$	
			OR for substituting $x = 3$ and $y = 4$ in $y = \frac{2}{3}$ " $x + c$	
			3	
		P1	(dep P3) for forming an equation in a and b	
			$\operatorname{eg} \frac{b-4}{a-3} = \frac{2}{3}$ or $b = \frac{2}{3}a + 2$	
			OR correct equation in terms of x and y	2
			$eg y = \frac{2}{3}x + 2$	$y-4=\frac{2}{3}(x-3)$ gets P4
			2 2	Accept 0.66 or 0.67 oe for 2/3
4		Al	for $b = \frac{2}{3}a + 2$ oe	75

Pearson Edexcel - Specimen Papers Set 2 - Paper 1 (Non-Calculator) Higher Tier

4.

11	$\frac{4}{3\times2}\pi x^3 + \frac{4}{3}\pi x^3 = 2\pi x^3$	$h = \frac{x}{2}$	P1	Process to find volume of cone or hemisphere
	$(2x)^2 \pi h = 4x^2 \pi h$ $4x^2 \pi h = 2 \pi x^3$	_	P1 P1 P1 A1	Process to total volume of solid Process to find volume of cylinder Equates 2 volumes Reaches $h = \frac{x}{2}$

Pearson Edexcel - Thursday 26 May 2016 - Paper 1 (Non-Calculator) Higher Tier

5.

9	T = 5x + 20y	B3 for $T = 5x + 20y$ oe (B2 for $5x + 20y$ or $T = 5x + y$ or $T = x + 20y$ or $T = 20x + 5y$) (B1 for $T = a$ two term linear expression in x and y , or $5x + y$ or $x + 20y$)
		209)

Pearson Edexcel - Wednesday 5 November 2014 - Paper 1 (Non-Calculator) Higher Tier

6.

Pearson Edexcel - Friday 2 March 2012 - Paper 3 (Non-Calculator) Higher Tier

9			S = 20B + 30T	3	B3 for $S = 20B + 30T$ oe (B2 for $20B+30T$ or $S = 20B + T$ or $S=B+30T$ or S = 30B + 20T) (B1 for $S = a$ linear expression in B and T , or 20B + T or $B + 30T$)
---	--	--	---------------	---	--

Pearson Edexcel - Monday 6 June 2011 - Paper 3 (Non-Calculator) Higher Tier

8.

Pearson Edexcel - Friday 12 November 2010 - Paper 4 (Calculator) Higher Tier

9.

12		T = 7x + 5y		B3 for <i>T</i> = 7 <i>x</i> + 5 <i>y</i> oe (B2 for 7 <i>x</i> + 5 <i>y</i> oe or <i>T</i> = 7 <i>x</i> + or <i>T</i> = + 5 <i>y</i>) (B1 for <i>T</i> = an expression in <i>x</i> and <i>y</i> or 7 <i>x</i> or 5 <i>y</i> seen)
----	--	-------------	--	---

Pearson Edexcel - Thursday 5 November 2009 - Paper 3 (Non-Calculator) Higher Tier

10.

(B2 $4p+20b$ as an expression of Or $N=k+20b$ oe or $N=4p+k$ oe (B1 for $N=cp+db$, c and d ou Or $k+20b$ oe or $4p+k$ oe any $k\neq 0$ SC B2 for $N=4p+20b$ subsequiplified SC B2 for $k=4p+20b$ subsequently SC B1 for $4p+20b$ subsequently SC B1 for 4	
Or $k+20b$ oe or $4p+k$ oe any $k\neq 1$ SC B2 for $N=4p+20b$ subseq simplified SC B2 for $kN=4p+20b$ ($k\neq 1$)	
simplified SC B2 for $kN = 4p+20b$ $(k \ne 1)$	
SC B1 for $N = 4p$ (space)20b of	y incorrectly simplified

Pearson Edexcel - Tuesday 10 November 2009 - Paper 4 (Calculator) Higher Tier

25	(a)	$y = kx$ $10 = k \times 500$	$y = \frac{1}{50}x$	3	M2 for $10 = k \times 500$ oe or $10 = \frac{500}{k}$ oe
					(M1 for $y = kx$ or $y = \frac{x}{k}$ or $y = \alpha x$)
					A1 for $y = \frac{1}{50}x$ oe (eg $y = 0.02x$)
	(b)		7	1	B1 ft from linear $y = kx$

AQA GSCE – Wednesday 8 November 2017 – Paper 3 (Calculator) Higher Tier

	3rd box indicated	B1			
20	Additional Guidance				